AI Safety: [1] VeRe: verification guided synthesis for repairing deep neural networks,Ma J., Yang P., Wang J., Sun Y., Huang C.-C., and Wang Z. in ICSE 2024. [2] TrajPAC: towards robustness verification of pedestrian trajectory prediction models,Zhang L., Xu N., Yang P., Jin G., Huang C.-C, and Zhang L. in ICCV 2023. [3] Towards practical robustness analysis for DNNs based on PAC-model learning, Li R., Yang P., Huang C.-C., Sun Y., Xue B., and Zhang L. in ICSE 2022. [4] Improving neural network verification through spurious region guided refinement. Yang P., Li R., Li J., Huang C.-C., Wang J., Sun J., Xue B., and Zhang L. in TACAS 2021. [5] Prodeep: a platform for robustness verification of deep neural networks. Li R., Li J., Huang C.-C., Yang P., Huang X., Zhang L., Xue B., and Hermanns H. in ESEC/FSE 2020. Fundamental Theories & Algorithms: [6] Explicit bounds for linear forms in the exponentials of algebraic numbers, Huang C.-C. in ISSAC 2022. [7] Measuring the constrained reachability in quantum Markov chains. Xu M., Huang C.-C., and Feng Y. Acta Informatica (2021). [8] A conflict-driven solving procedure for poly-power constraints. Huang C.-C., Xu M., and Li Z.-B. Journal of Automated Reasoning (2020). [9] Positive root isolation for poly-powers by exclusion and differentiation. Huang C.-C., Li J.-C., Xu M., and Li Z.-B. Journal of Symbolic Computation (2018). [10] Analyzing ultimate positivity for solvable systems, Xu M., Huang C.-C., Li Z.-B.,and Zeng Z. Theoretical Computer Science (2016). |